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Moment and Geometric Probability Inequalities
Arising from Arrangement Increasing Functions

by
Philip J. Boland, Frank Proschan, and Y. L. Tong

Abstract e
——— o N NPT
) ~
A real valued function g of two vector arguments)/x_ and y ¢ R is said to be
arrangement increasing if it increases in value as the arrangement of components
in x becomes increasingly similar to the arrangement of components in }
Hollander, Proschan and Sethuraman (1977) show that the composition of arrange-

ment increasing functions is arrangement increasing. This result is used to

generate some interesting probability inequalities of a geometric nature for

exchangeable random vectors. Other geometric inequalities for families of

arrangement increasing multivariate densities are also given, and some moment

inequalities are obtained. <\/
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1, Introduction

Definition 1.1. For a given vector x= (xl, ey xn) € R“, we let xt =

(x[n], cees x“]) and x+= (xlll’ cens x[n]) be respectively the vectors with
the components of x arranged in increasing (decreasing) order. For any permu-

tation m of {1, 2, ..., n}, we let -)Sm:(xn(l)’ vees xﬂ(n)).

For vectors x, y, u, v in Rn, we write (x, y) 2 (u, v) if there exists a

permutation 7 of {1, ..., n} such that x_=u and y =v. We define (x, y) 4 (u, v)
1

if there exist a finite number of vectors z°, ..., _z_K such that

@) 9, 2 and x4, 292w, v) and

(ii) 31-1 can be obtained from 11 by an interchange of two components of

_z_l, the first of which is less than the second.

Definition 1.2. A function g of two vector arguments x and ye R" for which

g(x) sg(y) when 2‘..2)1 is said to be arrangement increasing or Al by Marshall and

Olkin (1979), and decreasing in transposition or DT by Hollander, Proschan and

Sethuraman (1977). We shall use the terminology arrangement increasing (AI) in
order to emphasize that such a function g(x, y) increases in value as the
arrangement of components in x becomes increasingly similar to the arrangement
of components in y.

Hollander, Proschan and Sethuraman (1977) have shown that the class of
arrangement increasing functions is closed under some basic operations. In
particular the class of such functions is closed under mixtures, and the product
of nonnegative AI functions is AI. If ¢ is an increasing function and g(x, y)
is AI, then clearly ¢(g(x, y)) is AI. Perhaps the most powerful closure property

they show however is that the composition of Al functions is AI.

Theorem 1.3. (Hollander, Proschan and Sethuraman). Let u be a measure

defined on the Borel subsets of R" such that for all Borel sets AcR"™ and all
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permutations m, u(A) =u(A“) where Aﬂ= {y: y=x = (x s xﬂ(n)) for some

“(1) 3 e
xeA}. If 85 is AI on R"xR" for i= 1, 2, then the composition g given by

g(a, b) = fg;(a, X)g,(x, Du(dx)
is AI, provided the integral exists.

We will illustrate some of the power of this result in Section 2 when we
show that many geometric probabilities of random vectors X with exchangeable
densities f(x) are Al functions. In Section 3 we further illustrate this power
with examples of geometric probability comparisons arising in families of Al

multivariate densities. Some moment inequalities are also obtained.

2. Arrangement Increasing Functions from Exchangeable Random Vectors.

In this section we will assume X = (X o5 Xn) is an exchangeable random

1 e
vector (that is the distribution of X = (X s ees
=n w(1)

the permutation w) with density or mass function f(x). Many interesting geo-

R )(1r (n)) does not depend on

metric probability functions which are arrangement increasing as well as some

roment inequalities may be generated by the use of the following corollaries.

Corollary 2.1. Let X be an exchangeable random vector with density or

mass function f(x). Let h' be an AI function on R"xR" and ¢, =R>R be non-

decreasing for i=1, 2. Then
1 2 . . n_,n
¥(a, b) =E [4,(h" (8, X))¢,(h"(X, b))] is Al in (2, b) eR" xR".

Proof: Let gi(_a_, X) =¢l(hl(3, X)) and 32(5' b) =¢2(h2(§_, b)). Then g, and g,

are Al (nondecreasing functions of Al functions are AI). As u(dx) = f(x)dx is a
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permutation symmetric measure, we deduce from Theorem 1.3 that
v(a, b) = [g,(a, 0g,(x, DE(X)dx
is arrangement increasing in a and be R".

Corollary 2.2. Let X be an exchangeable random vector with density or

mass function f(x), and h' be an Al function on R"xR™ for i=1, 2. Then for

any two constants < and Cys

P(E_:Efy = P!‘Ob(hl(g’ l() 2 cl’ hz(_x_: _l_’) 2 Cz)

. : . : n_,n
is an arrangement increasing function of a and beR xR,

Proof: This follows from Corollary 2.1 by letting ¢i=l[c. +o] (the character-
1’

istic function of the set [ci, +o)) for i=1, 2.

{.’3 Example 2.3. The following are some elementary examples of AI functions

which will be useful in illustrating Corollaries 2.1 and 2,2:

F 1 h1(-li"—’-)=1{u.sv:.l: i=1, ..., n}’
& 7
-“.. 2. h (E_’ _V.) = U.V4
: 2 je1 t?
a 2
3. hy(u, V= - Y (u, -v.))°.
— . i i
i=1
2
;
4 hgw W= - ] Fxr . :
4 is1Yy {ui>0, vi>0. i=1, ..., n}
5. h -1 * wh Ya(u, -v.)I
. S(E’X)'i=1(ui_vi) where (u; -v.) =(u; -v, {u; >v, )"

6. h.(y, v) = - max|u, - v, |.

n
7. h,(u, ¥) = -'leui-vil.
i=
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Example 2.4. Judicious selection of h1 and h2 from, say Example 2.3, can
yield some useful Al geometric probability functions. We illustrate this with

some examples.

1. The rectangular probability

Prob(aisxisbi: i=1, ..., n) =Prob(Xe (a, b])

F is an AI function of a and b, as can be seen by using hl(g, x) =h1(g, x)
and hz(i, b) =h1(5, b). (See also Boland (1985) for more on rectangular

probabilities of this type).

n n

2. Prob( ] a)X,2c;, I b.,X 2c)) is Al in a and b, as can be seen by
i=1 i=1

letting hl(g, x) =h,(a, x) and hz(_)g, b) =h2(5, b). For example, if

X=(X,, X;) is exchangeable, then = =Prob(4X, +X,24, 2X; +4X,22)

2 1

SProb(X  +4X, 24, 2X +4x,22) = |||l

2 1

(Insert Figure 2.1 here)

3. Of course any combination of two of the types of functions in Example

2.3 gives us a probability function which is AI in a and b, such as

n
2
Prob(izlai)(izcl and {(xi-bi) £c¢j)
or
n
Prob(X; 2a, for all i=1, ..., n and ilexi-bil s¢c,).

Remark 2.5. Let X be an exchangeable random vector with mass or density

function f(x). Let h' be an AI function for i=1, 2, and assume

(3, b), (a”, b’) e R""xR" are given, where (a, b) 2 (a", b").
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Figure 2.1 Regions generated by AI functions.
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We use the notation Y = (Yl’ YZ) = (hl(g_, X}, hz(_)g, b)) and Y* = (Yi, Yé) =
(hl(g‘, X), th(_, b”)). Because X is exchangeable, Y and Y” have the same mar-
ginals. In other words the distributions of the marginals of Y are unaffected
by a permutation of the components of a or b, although their joint distribution

may be altered.

Corollary 2.2 says that (Yi, Yé) is in a sense more positively quadrant
dependent than (Yl’ Yz). See Lehmann (1966) and Barlow and Proschan (1981) for
concepts of dependence.

We might say that the bivariate vector (Ui, Ué) is more positively associ-

ated than (Ul’ Uz) if Ui’ and Ui have the same distribution for i=1, 2 and
cov(¢,(U7), ¢,(U3)) 2cov(é; (U,), ¢,(U,))

for every pair ¢1, ¢2 of nondecreasing functions. (See Esary, Proschan and

Walkup (1967) for more on association). Then Corollary 2.1 implies that

(Yi, Yi) is more positively associated than (Yl. YZ) since for any nondecreasing

cov(9,(Y]), ,(¥5)) - cov(,(Y)), 6,(Y,)) =E(e;(Y])0,(Y7)) - ECs, (Y )4, (¥,)).

Remark 2.6. Corollary 2.1 yields moment inequalities when X is exchange-

able taking values in [0, +°=)n. Suppose that X is of this type and let us use

the notation of Remark 2.5 where however (a, b), (a”, b") € [0, +°°)nx [o, m)n
2

and hl and h” take nonnegative values.

Let ¢i(y) =ymi for y20 and m a positive integer, i =1, 2. Then Corollary

2.1 implies that when (a, b) 2 (a*, b"),

IE(Y1 Y2 )ZIE(Y1 Y2 ) for all me m2>.1.
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| 3. Arrangement Increasing Probabilities for Al families of Densities.

Many families of multivariate densities {fx (x)} have the property that the

function ¢(2, x) = £, (x) is arrangement increasing in the parameter 1 and the
outcome x. The multinomial
n A%

i .
¢1(_A_, §)=Nli:1 xil 0<Ai, xi-O, 1, ...i=1, ..., nand N>0(

and the multivariate normal distribution with common variance and common covar-

iance
3 -3 enrien”
6,(1, x) = (2m) lzf

(where I is the positive definite covariance matrix with

% on the diagonal and poz elsewhere and p >n-11 )

are but two such examples. For many other examples see Hollander, Proschan

and Sethuraman (1977).
The following corollary of Theorem 1.3 enables one to construct many Al

functions of a geometric type for Al families of densities.

Corollary 3.1. Let {f,(x)} be an AI fumily of probability densities (or
mass functions). Suppose h is an AI function and that ¢ is an arbitrary con-

stant. Then

p—x‘, 3(&) =Prob(h(a, x) 2c: X has density £, (x))

is an AI function of ) and a.

Proof: This follows from Theorem 1.3 by letting gl(g, Xx) = I{h(g,x)_z )’

g,(x, ) =£, () end u either Lebesgue measure or an appropriate counting measure
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on a discrete set.

We now illustrate Corollary 3.1 with diverse examples.

Example 3.2. We assume that X is a multivariate random vector with density

given by fA(’—()’ and that the family {fA(gc)} is an AI family of densities.

1.

FL(_a_)=Prob)‘(Xisai: i=1, ..., n) and F_)‘_(g) a

Prob)‘(xi > a: i=1, ..., n) are AI in X and a. (Gee Hollander, Proschan

and Sethuraman (1977)).

n
Probx( Z aixizc) is AI in ) and a. As a special case, it follows
2i=1
n X,
that if X; >0 for all i and ), then Prob, ( Y E—i—- <1) is Al in ) and a,
2i=1

where ae (0, +°°)n.

()(i - ai)zs ¢) is Al in ) and a. Hence for a given )\, the

n
Prob)‘(. Zl

probability that X lies in a sphere of radius /c with center a=
(al, cens an), increases as the order of the coordinates of a becomes
more similar to the order of coordinates in A= (7\1, cees A).

n
Similarly if follows that

n
Probl(igllxi-ail sc) and Prob?\_(!xi-ail <c: i=1, ..., n)

are both AI in A and a.

n 2
If X € [0, +=)" with probability 1 for all A, then Prob,( } Xi/a? <o)
L]

is Al in A and a where a € (0, )",
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n

Prob)‘( n (Xi - ai)+2c) is AI in X and a. The boundary of the above
—i=1

region for the 2 dimensional case is a hyperbola, illustrated in
Figure 3.1.

Figure 3.1 Hyperbola

Example 3.3.

Suppose that {fx(g)} is an AI family of densities where each
- n
fx(gj has support in [0, +m)“. Now Xim1 is an AI function

m and x, and
i=1

n
hence a further application of Theorem 1.3 yields that EA( b Ximi) =y ls cov0 T

= 3ji=1] pAR
is an AI function of A and m.

X.t.
P11

II‘M =

Now eX'L= ¢l is also an AI function of x and t.

It is easy to see
therefore that the multivariate Laplace transform

- N X+t
M(;FL 1(9 =M_}‘-(L = [e~ ——f_}l(_)g)di

is also an AI function in ) and t.
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